FEATURES

> Tungsten/Moly contacts provide optimal load switching capability*
$>$ Small footprint is ideal for maximizing application efficiency
$>$ Mounting options in any axis

PRODUCT SPECIFICATIONS

Contact \& Relay Ratings	Units	G23
Contact Form		2C
Contact Arrangement		DPDT
Contact Material (moveable/stationary)		molybdenum /tungsten
Dielectric		Vacuum
Voltage, Test Max., Contacts \& to Base (15μ A Leakage Max.) dc or 60 Hz	kV Peak	23
Voltage, Operating Max., Contacts \& to Base ($\mathbf{1 5} \boldsymbol{\mu}$ A Leakage Max.)		
dc or 60 Hz	kV Peak	20
2.5 MHz	kV Peak	12
16 MHz	kV Peak	8
32 MHz	kV Peak	5
Current, Load Switching		Contact factory* *
Current, Continuous Carry Max		
dc or 60 Hz	Amps	75
2.5 MHz	Amps	35
16 MHz	Amps	22
32 MHz	Amps	15
Coil Hi-Pot (V RMS, 60 Hz)	V	500
Capacitance		
Across Open Contacts	pF	3
Contacts to Ground	pF	3.5
Resistance, Contact Max @ 1A, 28 Vdc	ohms	0.010
Operate Time	ms	30
Release Time	ms	10
Life, Mechanical	cycles	1 million
Weight, Nominal	g (oz)	380 (14)
Vibration, Operating, Sine (55-500 Hz Peak)	G's	10
Shock, Operating, 1/2 Sine11ms (Peak)	G's	50
Temperature Ambient Operating	${ }^{\circ} \mathrm{C}$	-55 to +125

[^0]COIL RATINGS

Nominal, Volts dc	$\mathbf{1 2}$	$\mathbf{2 6 . 5}$
Pick-up, Volts dc, Max.	8	16
Drop-Out, Volts dc	$.5-5$	$1-10$
Coil Resistance (Ohms $\pm 10 \%)$	60	240

PART NUMBER SYSTEM

G23	W	F	
High Voltage/ Power Terminal Connections		W = Screw	
Mounting			
Coil Voltage			Blank $=26.5 \mathrm{Vdc}$ $-12 \mathrm{Vdc}=12 \mathrm{Vdc}$

[^1]
[^0]: * * Consult factory for load switching applications.

[^1]: * Order the relay with the coil voltage in the part number as shown above. The coil voltage will appear on the coil plate near the coil terminals rather than in the P / N on the relay.

