P170 SERIES

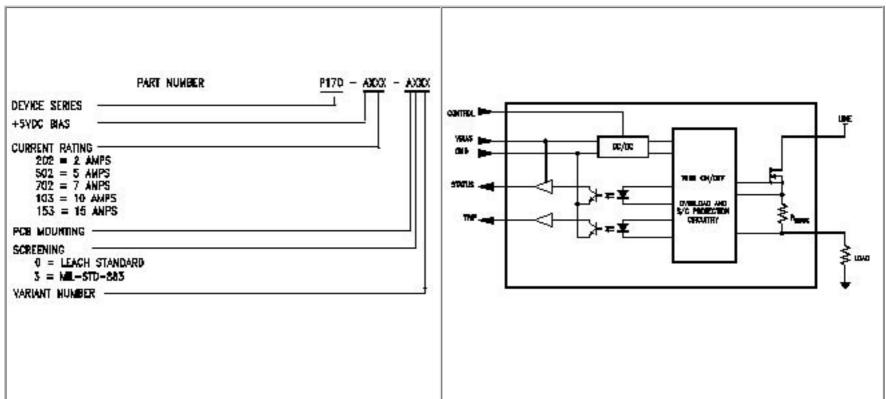
ENGINEERING DATA SHEET

SOLID STATE POWER CONTROLLER 28 VDC, 1PNO-WITH CURRENT OR VOLTAGE STATUS OUTPUT **UP TO 15 AMP RATING**

SIZE: 37.97 x 27.31 x 8 mm

DESCRIPTION

The P170 Series of Solid State Power Controllers (SSPC) is rated from 2 to 15 Amperes. These LEACH SSPC's feature reliable, trouble free switching together with real short circuit protection. Employing a power FET output stage, and built using thick film technology, they offer low on state resistance and low on state voltage drop. They react to fault condition and can shutdown within microseconds, if required. Two status signals, derived from the load current value and from the device gate, are reported via optical isolators. Designed to operate in 28 VDC systems, these devices do not require derating for any load type. They are hermetically sealed, in a metal package.


FEATURES

.Fast acting

- Built-in overload and short circuit protection
- Load current or voltage status
- .FET Gate status or trip status
- Very low voltage drop
- No derating up to 105° C
- .Trip free

Fully isolated bias, control and status No derating for non-resistive loads Exceeds MIL-P-81653C requirements Very low voltage drop output stage

BLOCK DIAGRAM

Featuring LEACH® power and control solutions www.esterline.com

P.O. Box 5032 Buena Park, CA 90622

57430 Sarralbe France

ASIA

Units 602-603 6/F Lakeside 1 No.8 Science Park West Avenue Phase Two, Hong Kong Science Park

Pak Shek Kok, Tai Po, N.T.

Hong Kong

Tel: (33) 3 87 97 31 01 Tel: (852) 2 191 3830 Tel: (01) 714-736-7599 Fax: (01) 714-670-1145 Fax: (33) 3 87 97 96 86 Fax: (852) 2 389 5803

Data sheets are for initial product selection and comparison. Contact Esterline Power Systems prior to choosing a component.

Date of issue: 4/06 - 30 -Page 1 of 4

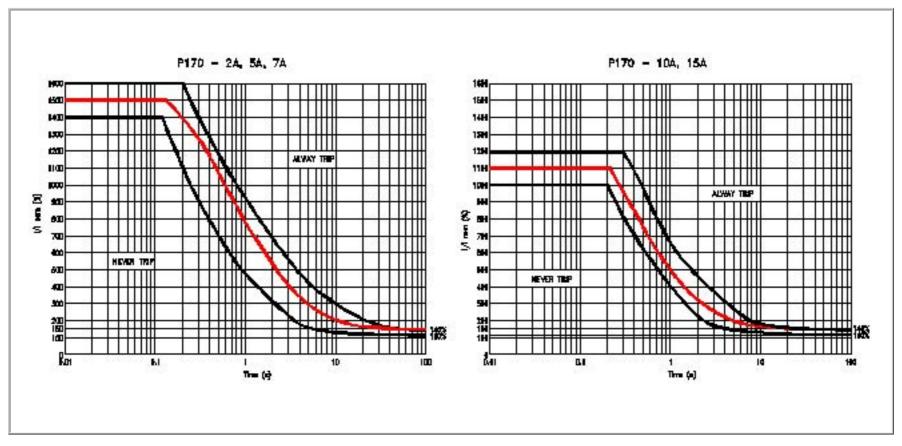
ELECTRICAL CHARACTERISTICS (CURRENT STATUS)

P170 SERIES

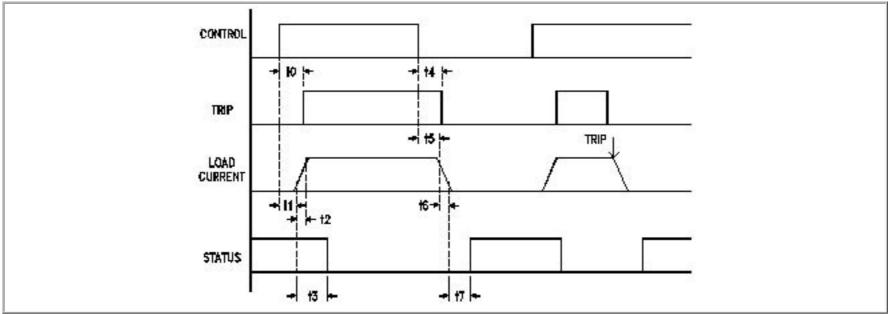
Typical values are at 25 ± 5° C INPUT	DEVICE WITH CURRENT STATUS						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
BIAS On Voltage	V _{IHB}	4.5		5.5	V	1,2	
BIAS On current	ІІНВ			30	mA	3	
BIAS Off current	I _{ILB}			1	mA	3	
CONTROL voltage on	V _{IHC}	2.4			V		
CONTROL voltage off	V _{ILC}	-0.8		0.8	V		
CONTROL current on	I _{IHC}			50	μA	4	
CONTROL current off	lıc			-10	μA	5	
Transients (BIAS input)	V _{TB}			+50	V	6	

Notes:

- 1. BIAS voltage must be a step function.
- 2. No reverse polarity protection.
- 3. BIAS voltage is 5.0 V.
- 4. Control voltage at 2.4 vdc.
- 5. Control voltage at 0.4 vdc.
- 6. Max. Duration 50 ms, Duty Cycle 1%, Repetition Rate 1 Hz.


OUTPUT						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Load current	IL	0		100	%I rated	1
On state voltage drop	V _{LD}			200	mV	2
Off state line voltage	V _L			32	V	3
TRIP high voltage	V _{OHS}	2.4			V	
TRIP high current	I _{OHS}			50	μΑ	
TRIP low voltage	V _{OLS}			0.8	V	
TRIP low current	I _{OLS}			0.2	mA	
Status pick up	I _{SON}			15	%I rated	
Status drop out	I _{SOFF}	5			%I rated	
Leakage current	I _{LL}			1	mA	4
Transient voltage	V _T			+50	V	5
Spikes	V _S	-600		+600	V	6
Trip current	I _{TR}	110	130	145	%I rated	7
Isolation voltage	V _{ISO}			750	V _{rms}	
Insulation resistance	R _{INS}	100		1000	ΜΩ	8

Notes:


- 1. Load current is subject to thermal derating.
- 2. At load current I_L=100% rated value.
- 3. Reverse polarity is not blocked and may damage the SSPC.
- 4. At V_L =28V, Case temperature = 105° C.

- 5. Duration 12.5 ms max. per MII-STD-704D.
- 6. Duration 10 μs max. per Mil-STD-704D.
- 7. See Trip Characteristics.
- 8. 500 Vdc, ± 10%

TRIP CHARACTERISTIC P170 SERIES

TIMING DIAGRAM (CURRENT STATUS)

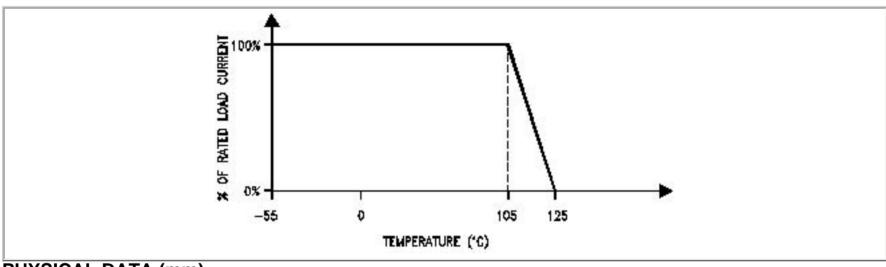
TIMING

Parameter	Symbol	Тур.	Max.	Unit	Note
CONTROL to TRIP delay	t ₀	300	1000	μs	
Turn on delay	t ₁	150	200	μs	
Load current rise time	t ₂	30	1000	μs	
Turn on to LOAD delay	t ₃	75	1000	μs	
CONTROL to TRIP	t ₄	150	1000	μs	
Turn off delay	t ₅	150	200	μs	
Load current fall time	t ₆	20	1000	μs	2
Turn off to LOAD delay	t ₇	400	1000	μs	

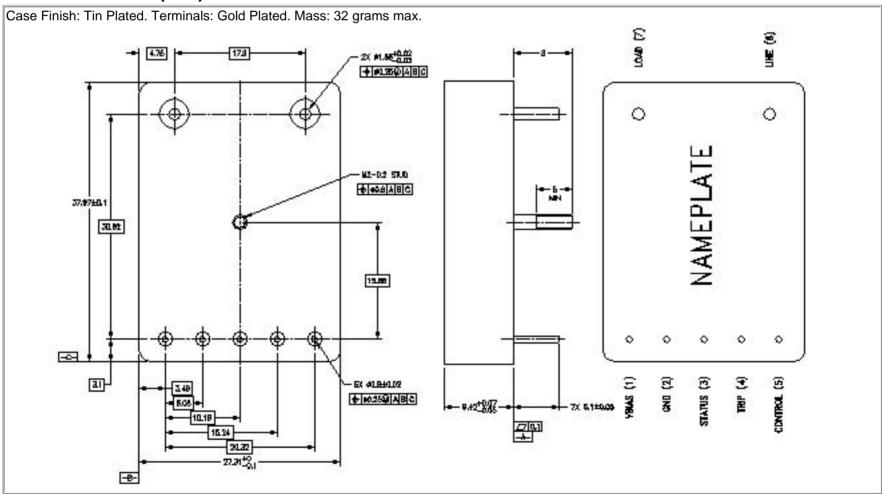
Notes:

- 1. All timing measurements taken at 10% and 90% points into resistive rated load.
- 2. Current fall time from trip dependant on overload condition.

ENVIRONMENTAL DATA


P170 SERIES

Parameter	Symbol	Min.	Max.	Unit	Notes
Operational Temp. Range	T _{op}	-55	105	° C	1,2
Storage Temp. Range	T _{st}	-55	125	° C	
Thermal resistance junction to case θ_{jc}	$\theta_{\sf jc}$		3.2	° C/W	
Max. Junction Temperature of Output Stage	T _{j(max)}		150	° C	
Vibration			20	g	3
Acceleration			5000	g	4
Shock			1500	g	5
Altitude			80000	ft	
MTBF			1.5	hours	6


Notes:

- 1. Case temperature
- 2. See thermal derating curve
- 3. MIL-STD-883C, Method 2007, test condition A, 20-2000 Hz
- 4. MIL-STD-883C, Method 2001, test condition A, Y1 axis
- 5. MIL-STD-883C, Method 2002, test condition B, 0.5 ms
- 6. Per MIL-HBK-217E, Quality level B-1, AUT environment at 25° C

THERMAL DERATING

PHYSICAL DATA (mm)

This engineering data sheet is designed for initial selection and comparison of products. While every effort is made to ensure the accuracy of all data, each part number, and its application, must be controlled by a Product Control Drawing (PCD). Please contact PowerCom, a Leach International Company, for further information.