TDH-6070/6071 ON RELEASE-FIXED PERIOD 2 PDT, 10 AMP

FEATURES

- Small size and weight
- High-reliability design
- Hermetically sealed
- High transient immunity
- Long life
- Low-power consumption
- Reverse Polarity Protection

PRINCIPLE TECHNICAL CHARACTERISTICS

Seal: Hermetically Tested per MIL-STD-883, Method 1014	1x10 ⁻⁶ atm, cm³/s max leakage
Finish:	Tin Plate
Terminals: TDH 6071 (Tin Lead Plate) TDH 6070 (Gold Plate)	Solder-lug Plug-In
Weight	1.9 oz. MAX

APPLICATION NOTE : 101

APPLICABLE SOCKETS: SO-1055-8690 (TDH-6070 only)

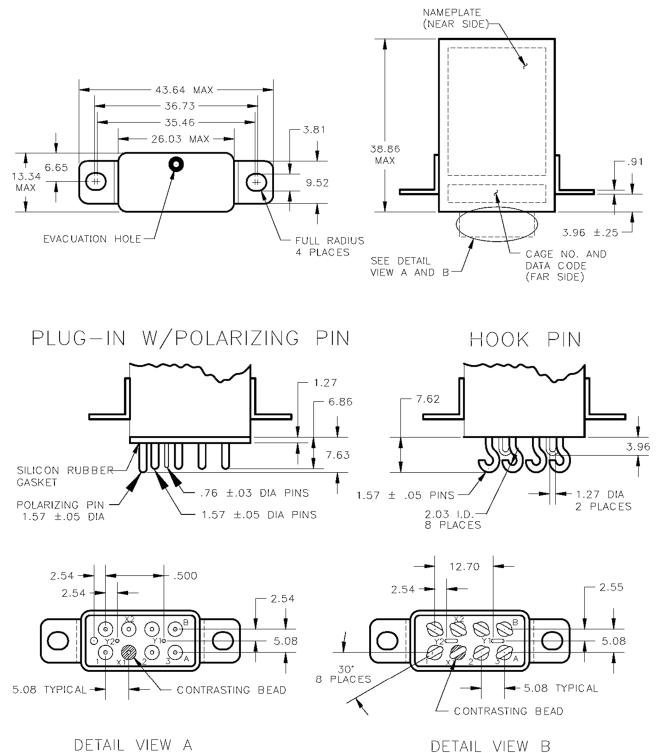
DESCRIPTION

The TDH-6070/71 Time Delay Relays have been designed with thick film hybrid microelectronics timing circuits and MIL-PRF-6106 relays, packaged in a hermetically sealed military style enclosure. The TDH-6070/71 series are designed to withstand severe environmental conditions encountered in military/aerospace applications. These relays are suited for use in power control, communication circuits and many other applications where power switching and high reliability are required over a wide temperature range.

(714) 736-7598 • leachcorp.com • LINA.CustomerService@LeachCorp.com

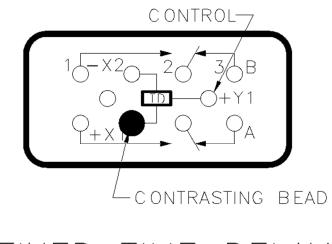
TDH-6070/6071 ON RELEASE-FIXED PERIOD 2 PDT, 10 AMP

ELECTRICAL SPECIFICATION

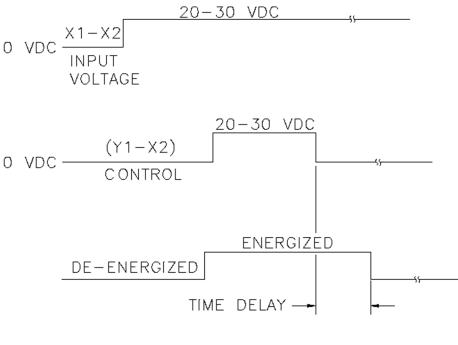

Input (Control) Parameters		
Timing:		
a. Operation, Time Delay on	Release	
b. Method	Fixed Period	
c. Range	0.1 to 600 Seconds [6]	
d. Accuracy	±10% [1]	
Recycle Time	50 ms, Max [5]	
Operations: (X1-X2)		
a. Input & Control Voltage	20-30 Vdc	
b. Operating Current	150 mA, Max @ +25° C	
Control Current	15 mA, Max @ +25° C	
Transients:		
a. Positive, MIL-STD-704A, Figure9, Limit 1	+80 Volts Max	
b. Spike, MIL-STD-704A, 0-10 μs	±600 Volts Max	
c. Self-Generated	±50 Volts Max	
d. Susceptibility	+80; -600 Volts Max	
Electromagnetic Interference Per MIL-STD-461A	Class 1D [3]	
Power Loss	500 Microseconds [2]	
Output (Load) Parameters		
Contact Form	2 PDT	
Contact Rating:		
a. Resistive	10A	
b. Inductive	8A	
c. Motor	4A	
d. Lamp	2A	
Dielectric Strength		
a. @ Sea Level, 60 Hz	1,000 Vrms [4]	
b. @ 80,000 ft., 60 Hz	350 Vrms	
Insulation Resistance @ 500 Vdc	1,000 M Ω [4]	

GENERAL CHARACTERISTICS

Ambient Temperatures Range:	
a. Operating	-55 to +125° C
b. Non-Operating	-65 to +125° C
Vibration:	
a. Sinusoidal, 10-2000 Hz	20 G
b. Random: 50-2000 Hz, MIL-STD-810	0.2 G²/Hz
Shock @ 6 ± 1 MS, 1/2 Sine, 3 Axis	100 G
Acceleration, in any Axis	20 G
Life at Rated Resistive Load; Minimum	100,000 operations


TDH-6070/6071 ON RELEASE-FIXED PERIOD 2 PDT, 10 AMP

MECHANICAL SPECIFICATIONS



ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

DIAGRAMS

TIME DELAY ON RELEASE

NUMBERING SYSTEM

Plug-in Terminal	Solder Hook Terminal
<u>TDH-6070 - 1001</u>	<u>TDH-6071 - 1001</u>
1 2 3	1 2 3

- 1. Model Number.
- 2. Pin Style Number.
- 3. Timing Range, Fixed: 100 milliseconds to 600 seconds. (See Note 6).

NOTES

- [1] The accuracy specification applies for any combination of operating temperature and voltage. For units with a timing range less than 1 second, add ± 10 milliseconds to the ± 10 % tolerance.
- [2] Transient and power loss specification are based on a maximum duty cycle of 1/50.
- [3] EMI test limits will not be exceeded during the timing interval or when continuously energized under steady state conditions, per paragraph 3.23, MIL-R-83726C.
- [4] Terminals X1, X2 and Y1 must be connected together during the test. Dielectric withstanding voltage and insulation resistance are measured at sea level between all mutually insulated terminals and between all terminals and case.
- [5] Recycle time is defined as the minimum time that power must be applied to the control terminal to assure that the next timing cycle will be completed within the specified timing tolerance. (Units can be recycled during timing or after time-out).
- [6] A four digit number defines the time delay in seconds (or milliseconds). The first three digits are significant figures, used to define the specific time delay. The fourth digit represents the number of zeros to follow the first three digits. Examples: - 1001 = 1 second (1,000 milliseconds)
 - 2502 = 25 seconds (25,000 milliseconds)
 - 5000 = 0.5 seconds (500 milliseconds)

For any inquiries, please contact your local sales representative: leachcorp.com