

FEATURES

- Small size and weight
- High-reliability design
- Hermetically sealed
- High transient immunity
- Long life
- Low-power consumption
- Reverse Polarity Protection

PRINCIPLE TECHNICAL CHARACTERISTICS

Seal: Hermetically Tested per MIL-STD-883, Method 1014	$1 \times 10^{-6} \mathrm{~atm}, \mathrm{~cm}^{3} / \mathrm{s}$ max leakage
Finish:	Tin Lead Plate
Terminals: TDH 6051 (Tin Lead Plate) TDH 6050 (Gold Plate)	Solder-lug Plug-In
Weight	$1.9 \mathrm{oz}$. Max

APPLICATION NOTE : 101

APPLICABLE SOCKETS:

SO-1055-8690 (TDH-6050 only)

DESCRIPTION

The TDH-6050/51 Time Delay Relays have been designed with thick film hybrid microelectronics timing circuits and MIL-PRF-6106 relays, packaged in a hermetically sealed military style enclosure. The TDH-6050/51 series are designed to withstand severe environmental conditions encountered in military/aerospace applications. These relays are suited for use in power control, communication circuits and many other applications where power switching and high reliability are required over a wide temperature range.

TDH-6050/6051 ON OPERATE-FIXED PERIOD

ELECTRICAL SPECIFICATION

Input (Control) Parameters	
Timing:	
a. Operation, Time Delay on	Operate
b. Method	Adjustable Period
c. Range	0.1 to 500 Seconds [6]
d. Accuracy	$\pm 10 \%$ [1]
Recycle Time	50 ms , Max [5]
Operations: (X1-X2)	
a. Input \& Control Voltage	20-30 Vdc
b. Operating Current	$150 \mathrm{~mA}, \mathrm{Max}$ @ +25 ${ }^{\circ} \mathrm{C}$
Transients:	
a. Positive, MIL-STD-704A, Figure9, Limit 1	+80 Volts Max
b. Spike, MIL-STD-704A, 0-10 $\mu \mathrm{s}$	± 600 Volts Max
c. Self-Generated	± 50 Volts Max
d. Susceptibility	+80; -600 Volts Max
Electromagnetic Interference Per MIL-STD-461A	Class 1D [3]
Power Loss	500ms [2]
Output (Load) Parameters	
Contact Form	2 PDT
Contact Rating:	
a. Resistive	10A
b. Inductive	8A
c. Motor	4A
d. Lamp	2A
Dielectric Strength	
a. @ Sea Level, 60 Hz	1,000 Vrms [4]
b. @ 80,000 ft., 60 Hz	350 Vrms
Insulation Resistance @ 500 Vdc	1,000 M 2 [4]

GENERAL CHARACTERISTICS

Ambient Temperatures Range:	
a. Operating	-55 to $+125^{\circ} \mathrm{C}$
b. Non-Operating	-65 to $+125^{\circ} \mathrm{C}$
Vibration:	20 G
a. Sinusoidal, $\mathbf{1 0 - 2 0 0 0 ~ H z}$	$0.2 \mathrm{G} / \mathrm{Hz}$
b. Random: $\mathbf{5 0 - 2 0 0 0} \mathbf{~ H z , ~ M I L - S T D - 8 1 0 ~}$	100 G
Shock @ $\mathbf{6} \pm \mathbf{1} \mathbf{~ M S , ~} \mathbf{1 / 2}$ Sine, $\mathbf{3}$ Axis	20 G
Acceleration, in any Axis	100,000 operations
Life at Rated Resistive Load; Minimum	

MECHANICAL SPECIFICATIONS

4 PLACES

NAMEPLATE(NEAR SIDE)

HOOK PIN

DETAIL VIEW A

DETAIL VIEW B

TDH-6051

FIXED TIME DELAY

TIME DELAY ON OPERATE

NUMBERING SYSTEM

Exemple: TDH-6050-1001
TDH-6051-1001

NOTES

1. The accuracy specification applies for any combination of operating temperature and voltage. For units with a timing range less than 1 second, add ± 10 milliseconds to the $\pm 10 \%$ tolerance.
2. Transient and power loss specifications are based on a maximum duty cycle of $1 / 50$.
3. EMI test limits will not be exceeded during the timing interval or when continuously energized under steady state conditions, per paragraph 3.23, MIL-R-83726C.
4. Terminals $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$ and Y 2 must be connected together during the test. Dielectric withstanding voltage and insulation resistance are measured at sea level between all mutually insulated terminals and between all terminals and case.
5. Recycle time is defined as the minimum time power must be removed from terminal X 1 to assure that a new cycle can be completed within the specified timing tolerance.
6. A four digit number defines the time delay in milliseconds. The first three digits are significant figures, used to define the specific time delay. The fourth digit represents the number of zeros to follow the first three digits.

Examples:

```
1001 = 1 second (1,000 milliseconds)
2502 = 25 seconds (25,000 milliseconds)
5000 = 0.5 seconds (500 milliseconds)
```

For any inquiries, please contact your local sales representative: leachcorp.com

