DZ 260, DZ 266, DZ 267 Universal Monitors for Speed, Standstill, Direction of Rotation

DZ260: Monitor with 3 programmable output relays and analogue output
DZ266: Signal converter with analogue output only (no relays)
DZ267: Monitor with 3 programmable output relays only (no analogue output)

- Compact and most versatile monitor series for control of overspeed, underspeed, standstill and direction of rotation
- Logical monitoring of remote motion enable signals
- Universal inputs for connection to incremental encoders (TTL, RS422 or HTL), Proximity switches, photocells remote TTL signals
- Extremely wide frequency range, operating from 0.1 Hz up to 1 MHz
- Easy setup by means of four keys and LCD menu
- All models include serial RS232 interface

Operating Instructions

Safety Instructions

- This manual is an essential part of the unit and contains important hints about function, correct handling and commissioning. Non-observance can result in damage to the unit or the machine or even in injury to persons using the equipment!
- The unit must only be installed, connected and activated by a qualified electrician
- It is a must to observe all general and also all country-specific and applicationspecific safety standards
- When this unit is used with applications where failure or maloperation could cause damage to a machine or hazard to the operating staff, it is indispensable to meet effective precautions in order to avoid such consequences
- Regarding installation, wiring, environmental conditions, screening of cables and earthing, you must follow the general standards of industrial automation industry
- - Errors and omissions excepted -

Version:	Description:
DZ26001b_af//kk/hk_07/07	First edition in English
DZ26002a_af/kk/hk_01/08	Commands "Force Relays" and "Freeze Relays" added
DZ26003a_af/hk_11/08	Command Monitor for remote enable signal

Table of Contents

1. Introduction 4
2. Available Models 4
3. Electrical Connections 5
3.1. Power Supply 6
3.2. Auxiliary Output for Encoder Supply 6
3.3. Impulse Inputs for Encoders and Sensors 6
3.4. Control Inputs 6
3.5. Serial Interface 7
3.6. Relay Outputs K1 - K3 (DZ260 and DZ 267 only) 7
3.7. Scalable Analogue Output (DZ260 and DZ 266 only) 7
4. LCD Display and Keys 8
5. Keypad Operation 9
5.1. Normal Operation 9
5.2. Keypad Interlock 9
5.3. General Setup Procedure 10
5.4. Changing Parameters on the Setting Level 10
5.5. Return from the Menu, Time-Out Function 11
5.6. Reset all Parameters to Factory Default Values 11
6. Menu Structure and Parameter Description 12
6.1. Survey of Menus 12
6.2. Parameter Descriptions 13
7. Example for Commissioning 25
8. Appendix 27
8.1. Hints for Use of the Linearization Function 27
8.2. Data Readout via Serial Interface 28
8.3. "Relay Action", override relay states by programmed states 29
8.4. Monitoring of remote motion enable signals 30
9. Specifications and Dimensions 31

1. Introduction

This new series of monitors has been designed as control modules for mounting inside of electric control cabinets. The units are suitable for speed monitoring of machines, signaling overspeed, underspeed, zero motion and the direction of rotation. Units providing an analogue output can moreover be used for closed-loop control or feedback purpose within a control system.

Very special advantages of these new monitors are the wide frequency range, the extremely fast response and the remarkable versatility with regard to possible input formats and programmable monitoring functions.

2. Available Models

There are three models available, all with fully similar basic functions, but with different options concerning the outputs.

3. Electrical Connections

The following table explains the terminal assignment of the different models:

Terminal	Text	Function		Model	
			DZ260	DZ266	DZ267
01	GND	GND, common minus potential	X	X	X
02	Vin	Power input, +17-30 VDC	X	X	X
03	GND	GND, common minus potential	X	X	X
04	+5,2V	Aux. output 5,2V / 200 mA	X	X	X
05	A	Impulse input, channel A	X	X	X
06	/A	Impulse input, channel /A (=A inverted)	X	X	X
07	B	Impulse input, channel B	X	X	X
08	/B	Impulse input, channel /B (=B inverted)	X	X	X
09	Control 2	Control input with programmable function	X	X	X
10	Control 1	Control input with programmable function	X	X	X
11	GND	GND, common minus potential	X	X	X
12	+10V Out	Analogue output 0-10 V	X	X	
13	20 mA out	Analogue output 0-20 mA	X	X	
14	GND	GND, common minus potential	X	X	X
15	RxD	Serial RS232 interface, data input	X	X	X
16	TxD	Serial RS232 interface, data output	X	X	X
17	K1N0	Relay 1, normally open contact	X		X
18	K1NC	Relay 1, normally closed contact	X		X
19	K1C	Relay 1, common contact	X		X
20	K2N0	Relay 2, normally open contact	X		X
21	K2NC	Relay 2, normally closed contact	X		X
22	K2C	Relay 2, common contact	X		X
23	K3NO	Relay 3, normally open contact	X		X
24	K3NC	Relay 3, normally closed contact	X		X
25	K3C	Relay 3, common contact	X		X

3.1. Power Supply

The units require a DC supply from 17 to 30 volts which must be applied to terminals 1 and 2 . Depending on the input voltage level and internal states, the power consumption may vary and lies in a range of about 70 mA with a 24 volts input (plus encoder currents taken from the auxiliary voltage output).

3.2. Auxiliary Output for Encoder Supply

Terminals 4 and 3 provide a $+5.2 \mathrm{VDC} / 200 \mathrm{~mA}$ auxiliary output for supply of encoders and sensors.

3.3. Impulse Inputs for Encoders and Sensors

The setup menu of the unit allows individual setting of the desired characteristics of the signal inputs. According to the application the units will accept single-channel signals (input A only with no direction information) as well as dual channel signals A / B including information of the direction of rotation. The following input formats and levels are acceptable:

- symmetric differential input with RS422 format A, /A, B, /B
- asymmetric (single-ended) TTL levels (A and/or B only without inverted channels)
- HTL level 10 - 30 volts, alternatively differential (A, /A, B, /B) or single-ended (A and B only, without inverted channels)
- Signals from proximity switches or photocells providing HTL level ($10-30 \mathrm{~V}$)
- NAMUR (2-wire) signals

3.4. Control Inputs

Two programmable control inputs allow the assignment of functions like remote start-up-delay, reset of relay lock, hardware interlock of the keypad and similar.
Both inputs provide PNP characteristics and require HTL level. Also it is possible to set the control function to "active LOW" or "active HIGH".
For evaluation of dynamic events the desired "active edge" can be set (rising or falling edge)

3.5. Serial Interface

The serial RS232 interface in general may be used

- for easy setup and commissioning of the units (with use of the OS32 operator software)
- to change settings and parameters by PC or PLC during the operation
- to read out internal states and actual measuring values by PC or PLC

The subsequent drawing shows how to link the monitor with a PC, using the standard 9-pin Sub-D-9 connector

3.6. Relay Outputs K1 - K3 (DZ260 and DZ 267 only)

The units provide three programmable relay outputs (all dry changeover), providing a switching capability of 30 volts / 2 amps DC or 125 volts / 0.6 amps AC or 230 volts / 0.3 amps AC. Both, switching characteristics and monitoring function may be programmed for each of the relays individually.

3.7. Scalable Analogue Output (DZ260 and DZ 266 only)

The units provide a voltage output with $a+/-10$ volts range (max. load 2 mA) and a current output with ranges $0-20 \mathrm{~mA}$ respectively $4-20 \mathrm{~mA}(\operatorname{load} 0-270 \Omega)$. Beginning and end of the desired conversion range can be set by the operator menu. The common potential of both outputs refers to GND.
The total resolution is 14 bits. A settling time of approx. 200 $\mu \mathrm{s}$. is required. The overall response time of the analogue outputs primarily depends on the selected Sampling Time setting. After volatile jumps of the input signal, the analogue outputs may need up to two Sampling Time cycles (plus $200 \mu \mathrm{sec}$.) to stabilize.

4. LCD Display and Keys

The units provide a back-lit LCD displays with 2 lines at 16 characters each, and four keys for setup and command control.

During the setup procedure the LCD display indicates the menu with all parameter texts and the set values of the parameters.

During normal operation, the LCD display indicates the following information:

The "Display Menu" allows free scaling of the speed measuring values and the speed-related parameters to any kind of engineering units.

5. Keypad Operation

A summary of all parameters and a detailed description of parameter functions is available under section 6 .

For all operation, the units provide four front keys which subsequently will be named as shown below:

\boldsymbol{P}	\&	-	+
PROG	UP	DOWN	ENTER

The key functions depend on the actual operating state of the units. Basically we have to distinguish between Normal Operation and Setup Operation

5.1. Normal Operation

While in normal operation state, the units monitor the speed according to the selected operational parameters and settings. Each of the front keys provides the command functions as attached to it upon setup in the "Command Menu"

5.2. Keypad Interlock

There is a 3 -stage conception to protect the keys against unauthorized changes of the configuration respectively against activation of commands.

Stage	Protected Range	Protection by	Key Operations	
Change of Parameters	Commands			
1	---	---	permitted	permitted
2	Menu	Password upon activation of menu	Protection of selectable parts of the menu via password	permitted
3	Keyboard	Hardware-Latch 1	interlocked	permitted
	Hardware Latch 2	All functions interlocked		

The "Key Pad" menu allows to define an individual password for each group of parameters. This function can be used to provide individual access rights to different operators. Upon access to an interlocked section the unit asks for the corresponding password. If the correct password is not entered in time, the unit denies access and automatically returns to normal operation.
The hardware latch function can be activated and deactivated by one of the Control Inputs, or by means of serial access to the corresponding locking register. functions, when the Control Inputs characteristics have been set inauspiciously.
In this exceptional case you can release the key functions again by either
a) applying the correct logical state (High or Low) to the inputs
b) or resetting the parameters to their default values (see section 5.6.)
c) or change the parameters being responsible for the locking by PC

5.3. General Setup Procedure

To change over from normal operation to the setup state, please keep down the PROG key for at least 2 seconds. After this the menu appears and you can select one of the menu groups. Inside each group you can select the desired parameter and edit the setting according to need. After this you are free to edit more parameters, or to return to normal operation.
The function of the different keys during setup is shown in the table below.

Key	Menu Level	Parameter Level	Setting Level
PROG	Save settings and return to normal operation	Return to Menu Level	Check entry, store result, then go back to Parameter Level
UP	Switch over to next menu	Select next parameter	Increment the highlighted digit or scroll the setting upwards
DOWN	Go back to previous menu	Select previous parameter	Decrement the highlighted digit or scroll the setting downwards
ENTER	Switch over to the Parameter Level of the current menu	Switch over to Setting Level	Shifts the highlighted digit one position to the left, or from utmost left to utmost right

5.4. Changing Parameters on the Setting Level

With signed parameters, the front digit can only be changed between „+" (positive) and „"» (negative). The subsequent example explains how to change a parameter from originally 1024 to a new value of 250000.
The example assumes that you are already on the Setting Level, i.e. you have already selected the corresponding parameter and read its actual value on the display. Highlighted (blinking) digits are marked by background color and indicate the cursor position.

No.	Display	Key action	Comment
00	001024		The actual value 1024 is displayed, with the last digit blinking
01		(2) $4 x$	Change last digit to 0
02	001020	\checkmark	Shift cursor to left
03	001020	(7) $2 x$	Change highlighted digit to 0
04	001000	$\checkmark 2 x$	Shift curser to left by 2 positions
05	001000	(7)	Change highlighted digit to 0
06	000000	\square	Shift cursor to left
07	000000	- $5 x$	Change highlighted digit to 5
08	050000	\square	Shift cursor to left
09	050000	$2 x$	Change highlighted digit to 2
10	250000		Save new setting and return to Parameter Level

5.5. Return from the Menu, Time-Out Function

At any time the PROG key changes the Menu by one level backwards or fully back to the normal operation mode. The menu also switches automatically one level backwards, every time when for 10 seconds no key has been touched (Time-Out-Function).

5.6. Reset all Parameters to Factory Default Values

If applicable, the whole set of parameters can be reset to factory default values (e.g. because a code for the keypad interlocking has been forgotten, or because the unit does no more work correctly for reasons of bad settings). All default values are indicated in the following parameter tables.
To execute this Reset procedure, you have to take the following steps:

6. Menu Structure and Parameter Description

All parameters are combined to groups, arranged in several menus. You must only set those parameters which are really relevant for your individual application.

6.1. Survey of Menus

This section provides an overview of the menus and their assignments to the different functions of the units. The menu names are printed bold, and associated parameters are arrayed directly under the menu names.
Menu texts are in English, according to the presentation on the LCD display

Preselect.-Menu*
Preselection 1
Preselection 2
Preselection 3

Encoder-Menu
Encoder Proper
Direction
Sampling Time
Wait Time
Filter
Set Value

Ser.Readout Menu
Multiplier
Divider
Offset

Special-Menu
Linear Mode**
Freq. Control
Input Filter

Key-Pad-Menu
Protect Menu M01
Protect Menu M02
Protect Menu M03
\ldots
Protect Menu M09
Protect Menu M10
Protect Menu M11

${ }_{*}^{\text {Command-Menu }}$

Key Up Func.
Key Down Func.
Key Enter Func. Input 1 Config. Input 1 Func. Input 2 Config. Input 2 Func.

Analogue-Menu**
Analogue Format
Analogue Start
Analogue End
Analogue Swing
Analogue Offset

Serial-Menu
Unit Number
Serial Baud Rate
Serial Format
Serial Protocol
Serial Timer
Register Code

Switching-Menu*	Linear.-Menu**
Pulse Time 1	P1 (x)
Pulse Time 2	P1(y)
Pulse Time 3	P2(x)
Hysteresis 1	P2(y)
Hysteresis 2	..
Hysteresis 3	P14(x)
Preselect Mode 1	P14(y)
Preselect Mode 2	P15(x)
Preselect Mode 3	P15(y)

Display-Menu
Up-Date-Time
Display Mode
Encoder Factor
Multiplier

Output Polarity Start up Mode Start up Relay Lock Relay
Standstill Time
(*) not relevant with DZ 266
(**) not relevant with DZ 267
$\left({ }^{* * *)}\right.$ partially inactive with DZ 266

6.2. Parameter Descriptions

6.2.1. Preselections

Preselection parameters are only relevant for models DZ260 and DZ267

These parameters assign the desired switching points to the relays. The preselections use the same engineering units as the display of the actual speed (see Display-Menu).

Preselection Menu	Code	Setting Range	Default
Preselection1	$" 00 "$	$-1000000.0 \ldots+1000000.0$	100.0
Switching point of relay 1 (engineering units)			
Preselection2	$" 01 "$	$-1000000.0 \ldots+1000000.0$	200.0
Switching point of relay 2 (engineering units)			
Preselection3	$" 02 "$	$-1000000.0 \ldots+1000000.0$	300.0
Switching point of relay 3 (engineering units)			

6.2.2. Definitions for the Encoder or Speed Sensor

Encoder-Menu	Code	Setting Range	Default
Encoder Proper	„A0"	$0 \ldots 11$	0
Encoder properties			
$0 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, RS 422 or TTL differential			
$1 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, single-ended, HTL NPN*			
$2 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, single-ended, HTL PNP			
$3 \mathrm{~A} / \mathrm{B} / 90^{\circ}$ quadrature, single-ended, TTL level			
$4 \mathrm{~A}=$ Impulse, $\mathrm{B}=$ direction, RS 422 or TTL differential			
5 A=Impulse, B=direction, single-ended, HTL NPN*			
6 A=Impulse, $B=$ direction, single-ended, HTL PNP			
7 A=Impulse, $\mathrm{B}=$ direction, single-ended, TTL level			
8 Channel A only, RS422 or TTL differential			
9 Channel A only, single-ended, HTL NPN*			
10 Channel A only, single-ended, HTL PNP			
11 Channel A only, single-ended, TTL level			
Direction	„A1"	0,1	0
Definition of the direction of rotation with quadrature encoders			
0 forward when A leads B			
1 forward when B leads A			

(*) With settings HTL / NPN the input terminals are connected to the power supply voltage of the unit $(+24 \mathrm{~V})$ via internal pull-up resistors. For this reason it is advisable to first set the encoder properties correctly, prior to connecting TTL encoders to the unit.
Setting HTL / NPN is also suitable for use with NAMUR (2-wire) proximities. (connect the positive wire of the sensor to the input terminal and the negative wire to GND)

Encoder-Menu	Code	Setting Range	Default
Sampling Time Internal time base for sampling of the input frequency (sec.)	„A2"	0.001..9.999	0.001
Wait Time Time to wait before unit detects zero speed (sec.) Impulse distances greater than this time will be takes as zero	"A3"	1..9.99	1.00
Filter Digital filter for smoothing of unstable frequencies 0 Filter off (very fast response to frequency changes) $1 \mathrm{~T}(63 \%)=1,9 \mathrm{msec}$. with Sampling Time $=1 \mathrm{msec}$. $2 \mathrm{~T}(63 \%)=3,8 \mathrm{msec}$. with Sampling Time $=1 \mathrm{msec}$. etc. $7 \mathrm{~T}(63 \%)=122 \mathrm{msec}$. with Sampling Time $=1 \mathrm{msec}$. (very slow response to frequency changes)	„A4"	$0 . .7$	0
Set Value Fixed frequency set value for encoder simulation (Hz) (see also "Command"-Menu)	„A5"	$\begin{array}{r} -1000000.0 \ldots \\ +1000000.0 \end{array}$	0

6.2.3. Serial Readout Menu

An actual value proportional to the input frequency can be read out via serial link, accessing the serial readout register (code :8) As a Basic Value this register uses the scaling set for the analogue output, i.e. a range from 0 to 10000 units corresponding to $0-100,00 \%$ of the full scale output (see "Analogue Menu"). This readout can still be rescaled to user-friendly engineering units, using the following parameters:

Serial Readout Menu	Code	Setting Range	Default
Multiplier	„A8"	$-99999 \ldots . . .99999$	10000
Divider	„A9"	$0 \ldots 99999$	0
Offset (absolute term)	„B0"	$-99999999 \ldots 99999999$	0

$$
\text { Readout }(: 8)=\text { Basic Value } \times \frac{\text { Multiplier }}{\text { Divider }}+\text { Offset }
$$

- The definition of the "Basic Value" occurs in the "Analogue Menu" and is also available for the DZ267 units without analogue output
- the ratio Multiplier / Divider must never be greater than 15000
- Setting "Divider" to zero will skip the rescaling procedure, resulting in a shorter response time with all functions of the unit

More details about serial communication can be found in the appendix.

6.2.4. Special-Menu

Special-Menu	Code	Setting Range	Default
Linear Mode Programmable linearization for Basic Value and Analogue Output 0 Linearization off 1 Linearization range $0-+10 \mathrm{~V}$ 2 Linearization range $-10 \mathrm{~V} \ldots+10 \mathrm{~V}$	„B3"	$0 . .2$	0
Freq. Control Defines behavior and response of the unit to sudden interruptions of the input frequency. This parameter must only be changed in very special cases and under special instruction of an motrona engineer. Otherwise please use always the default setting "2"!	„B4"	$0 . .2$	2
Input Filter Digital filter for limitation of the input frequency 0 Filter off, the full range of frequency will be evaluated 1 Filter to cut frequencies higher than 500 kHz 2 Filter to cut frequencies higher than 100 kHz 3 Filter to cut frequencies higher than 10 kHz	„B5"	$0 . .3$	0

Using the Input Filter will cause wrong frequency measurement when you use the unit with frequencies higher than indicated above.

6.2.5. Key-Pad-Menu

Key-Pad-Menu (Passwords for menu groups)	Code	Setting Range	Default
Protect Menu 01 (Preselect.-Menu)	"CO"	$0 . .999999$	0
Protect Menu 02 (Encoder-Menu)	"C1"		
Protect Menu 03 (Ser.Readout.-Menu)	"C2"	0 = no interlock	
Protect Menu 04 (Special-Menu)	„C3"		
Protect Menu 05 (Key-Pad-Menu)	"C4"	$1-999999=$	
Protect Menu 06 (Command-Menu)	"C5"	Password for the	
Protect Menu 07 (Analogue-Menu)	„C6"	corresponding	
Protect Menu 08 (Serial-Menu)	"C7"	group	
Protect Menu 09 (Switching-Menu)	"C8"		
Protect Menu 10 (Linear-Menu)	"C9"		
Protect Menu 11 (Display-Menu)	„D0"		

6.2.6. Command-Menu

Command-Menu (assignment of functions)	Code	Setting Range	Default
Key Up Func.	„D7"	$0 . .9$	0
Supplementary command function of the UP key			
0 no function			
1 Activation of a serial data transmission			
2 Force programmed relay states / Freeze relays (c) (a)			
3 Frequency simulation according to parameter "Set Value"			
4 Freeze actual input frequency			
5 Remote start-up-delay function (a)			
6 Release lock of relay 1 (a)			
7 Release lock of relay 2 (a)			
8 Release lock of relay 3 (a)			
9 Release lock of all relays 1-3 (a)			
Key Down Func.	„D8"	$0 . .9$	0
Supplementary command function of the DOWN key (see UP)			
Key Enter Func.	„D9"	$0 . .9$	0
Supplementary command function of the ENTER key (see UP)			
Input 1 Config.	"E0"	0.3	0
Switching characteristics of input „Control1"			
0 Static low			
1 Static High			
2 Dynamic, rising edge			
3 Dynamic, falling edge			
Input 1 Func.	"E1"	$0 . .12$	0
Control function of input „Control1"			
0 no function			
1 Activation of a serial data transmission			
2 Force programmed relay states / Freeze relays (c) (a)			
3 Frequency simulation according to parameter "Set Value"			
4 Freeze actual input frequency			
5 Remote start-up-delay function (a)			
6 Release lock of relay 1 (a)			
7 Release lock of relay 2 (a)			
8 Release lock of relay 3 (a)			
9 Release lock of all relays 1-3 (a)			
10 Interlock for parameter access via keypad (b)			
11 Total keypad interlock (b)			
12 Command monitor for remote motion enable signal			
Input 2 Config. (see Input 1 Config.)	"E2"	$0 . .3$	0
Input 2 Func. (see Input 1 Func.)	"E3"	$0 . .12$	0

(a) these parameters are only relevant for models DZ260 and DZ267
(b) see section 5.2
(c) see section 8.3
(d) see section 8.4

6.2.7. Analogue-Menu

Analogue-Menu (settings for analogue outputs)	Code	Setting Range	Default
Analogue Format	"E6"	$0 . .3$	0
Output format of the analogue output 0 Range -10 V to +10 V 1 Range 0 V to +10 V 2 Range 4 mA to 20 mA 3 Range 0 mA to 20 mA			
Analogue Start Start value (engineering units) for OV or -10 V or OmA or 4 mA	„E7"	$\begin{aligned} & \hline-10000000 \\ & . .10000000 \end{aligned}$	0
Analogue End End value (engineering units) for 10 V or 20 mA	„E8"	$\begin{aligned} & \hline-10000000 \\ & . .10000000 \end{aligned}$	10000
Analogue Swing Max. output value ($100=10 \mathrm{~V}$ or 20 mA)	„E9"	$0 . .1000$	100
Analogue Offset Shift of the zero position (mV)	„FO"	-9999..9999	0

The settings above are at the same time used to generate the Basic Value 0-10 000
(corresponding to $0-100,00 \%$), which finally can be read out from the serial register
with access code :8 (see 6.2 .3)

6.2.8. Serial Menu

Serial transmissions will operate in either the "PC Mode" or in "Printer Mode".
With "PC-Mode", the unit receives a request string and responds with a corresponding data string. For details of the protocol see separate description "SERPRO".
With "Printer Mode" the unit sends data without any request and under Timer control as described subsequently.
As soon as the unit receives a character, it automatically switches over to PC Mode and operates according to protocol. When for a period of 20 sec. no character has been received, the unit switches automatically back to "Printer Mode" and starts cyclic data transmission again.

Serial -Menu (Configuration of the serial link)	Code	Setting Range	Default
Unit Number (Serial device address) A unit number between 11 and 99 can be assigned to each unit. The address must not contain any zeros (0) since these addresses are reserved for collective addressing of several units.	„90"	$11 . . .99$	11
Serial $0=$ 9600 Baud Rate $=$ 4800 Baud $1=$ 2400 Baud $2=$ 1200 Baud $3=$ 600 Baud $4=$ 19200 Baud $5=$ $6=$ 38400 Baud	„91"	$0 . .6$	0
Serial Format (Format of transmit data) $0=$ 7 Data, Parity even, 1 Stop $1=$ 7 Data, Parity even, 2 Stop $2=$ 7 Data, Parity odd, 1 Stop $3=$ 7 Data, Parity odd, 2 Stop $4=$ 7 Data, no Parity, 1 Stop $5=$ 7 Data, no Parity, 2 Stop $6=$ 8 Data, Parity even, 1 Stop $7=$ 8 Data, Parity odd, 1 Stop $8=$ 8 Data, no Parity, 1 Stop $9=$ 8 Data, no Parity, 2 Stop	„92"	$0 \ldots 9$	0

Serial -Menu (Configuration of the serial link)

Serial Protocol
Determines the sequence of characters sent, when you use the serial output for cyclic data transmission under timer control (xxxxxxx is the measuring value transmitted).

0= Transmission = Unit Nr. - Data, LF, CR
1= Transmission = Data, LF, CR
Setting "1" removes the unit address from the string which allows a slightly faster transmission cycle.

6.2.9. Switching -Menu

These parameters are only relevant for models DZ260 and DZ267.
Indications $|\mathrm{f}|$ mean that only the absolute value of the frequency is considered. With all other indications, frequencies are categorically signed (+ with forward and - with reverse)

Switching -Menu (Switching characteristics of relays)	Code	Setting Range	Default
Pulse Time 1 Rel.1: Duration of timed output, sec. (0=static)	,.F8"	0 ... 9.99	0
Pulse Time 2 Rel.2: Duration of timed output, sec. (0=static)	,.F9"	0 ... 9.99	0
Pulse Time 3 Rel.3: Duration of timed output, sec. (0=static)	„G0"	0 ... 9.99	0
Hysteresis 1 Rel.1: Switching Hysteresis (engineering units)	,,G1"	0 ... 99999.9	0
Hysteresis 2 Rel.2: Switching Hysteresis (engineering units)	",G2"	0 ... 99999.9	0
Hysteresis 3 Rel.3: Switching Hysteresis (engineering units)	,"G3"	0 ... 99999.9	0
Preselect Mode 1 (switching operation for Preselection 1 / relay 1) $\|f\|>=\mid$ Preselection \| (catch*) $\|f\|<=\mid$ Preselection \mid with start-up-delay (catch*) $\|f\|==\mid$ Preselection \mid with start-up-delay (catch*) Standstill ($\mathrm{f}=0$) after expiration of standstill time $\mathrm{f}>=$ Preselection (catch*) (also suitable for signalization of forward direction) $5 \mathrm{f}<=$ Preselection (catch*) (also suitable for signalization of reverse direction) $6 \quad \mathrm{f}=$ = Preselection (catch*) 7 Relay signals "forward" when a positive frequency ($f>0$) is detected. This information disappears upon detection of "standstill" 8 Relay signals "reverse" when a negative frequency ($f<0$) is detected. This information disappears upon detection of "standstill"	„G4"	$0 . .8$	0
Preselect Mode 2 (switching operation for Preselection 2 / relay 2) see Preselection Mode 1	„G5"	0.8	0
Preselect Mode 3 (switching operation for Preselection 3 / relay 3) see Preselection Mode 1	„G6"	$0 . .8$	0
Output Polarity (Relay active „on" or active „off" **) Parameter with binary interpretation 0 all Relays are energized when the assigned event occurs 1 Relay 1 inverted 2 Relay 2 inverted 3 Relay $1 \& 2$ inverted 4 Relay 3 inverted 5 Relays $1 \& 3$ inverted 6 Relays $2 \& 3$ inverted 7 All relays inverted	„G7"	0.7	0

*) The corresponding relay can be used with catch operation, when a catch function has been assigned to it under parameter „Lock Relay"
${ }^{* *}$) Active "on" means the relay will be energized upon occurrence of the assigned event Active "off" means the relay will be de-energized upon occurrence of the assigned event

Switching -Menu (Switching characteristics of the relays)	Code	Setting Range	Default
Start up Mode	"G8"	$0 . .10$	0
Start-up-delay after power-up and after standstill			
0 No start-up-delay			
1 Start-up-delay 1 second			
2 Start-up-delay 2 seconds			
3 Start-up-delay 4 seconds			
4 Start-up-delay 8 seconds			
5 Start-up-delay 16 seconds			
6 Start-up-delay 32 seconds			
7 Start-up-delay 64 seconds			
8 Start-up-delay 128 seconds			
9 Automatic delay until to first overstepping of the set value			
10 Start-up-delay by remote signal			
Start up Relay	"G9"	$0 . .7$	0
Assignment of a start-up-delay function to the relays			
0 No start-up-delay for any of the relays			
1 Relay 1 provides start-up-delay			
2 Relay 2 provides start-up-delay			
3 Relays 1\&2 provide start-up-delay			
Relay 3 provides start-up-delay			
5 Relays $1 \& 3$ provide start-up-delay			
6 Relays $2 \& 3$ provide start-up-delay			
All relays provide start-up-delay			
Lock Relay	"H0"	$0 . .15$	0
Assignment of a catch function to the relays *)			
$0 \quad$ No catch function for any of the relays			
1 Relay 1 with catch (release by key or by control input)			
2 Relay 2 with catch (release by key or by control input)			
3 Relays $1 \& 2$ with catch (release by key or by control input)			
4 Relay 3 with catch (release by key or by control input)			
5 Relays $1 \& 3$ with catch (release by key or by control input)			
6 Relays $2 \& 3$ with catch (release by key or by control input)			
$7 \quad$ all Relays with catch (release by key or by control input)			
8-15 similar to $0-7$, but catch to release by key or by control input and automatically upon standstill			
Standstill Time	"H1"	$0 . .99 .99$	0
Time setting for standstill definition			
A time of xx.xx seconds after detection "zero input frequency" the unit signals "standstill" and re-activates the start-up-delays			

${ }^{*}$) According to parameter settings, the catch situation can be released by either pressing one of the front keys or by a remote control signal or automatically upon detection of standstill (see "Command menu"

Switching Menu (switching characteristics of the relays)
Code Range Default
Relay Action (for more details see section 8.3)
Selection of the relays of which the switching state should be overridden by key command or remote command (non-selected relays will continue normally)
0 No relay selected
1 Relay 1
2 Relay 2
3 Relays 1 \& 2
4 Relay 3
5 Relays 1 \& 3
6 Relays 2 \& 3
7 All relays selected
8 Freeze actual switching state of all relays
Action Polarity (for more details see section 8.3)
Desired override state of the corresponding relays
(parameter is out of function when "Relay Action" is set to " 8 ")

Setting	Relay K1	Relay K2	Relay K3
0	0	0	0
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

$0=$ Coil of the relay is de-energized.
$1=$ Coil of the relay is energized

6.2.10. Linear.-Menu

Linear.-Menu (Interpolation points for linearization)	Code	Setting Range	Default
$\mathrm{P} 1(\mathrm{x})$ \% Interpolation point 1, original value	„H2"	-100.000...100.000	100.000
P1(y) \% Interpolation point 1, substitute value	"H3"		
P2(x) etc.	"H4"		
P2(y) etc.	"H5"		
P3(x)	"H6"		
P3(y)	"H7"		
P4(x)	"H8"		
P4(y)	„H9"		
P5(x)	„I0"		
P5(y)	„I1"		
P6(x)	„I2"		
P6(y)	„I3"		
P7(x)	"14"		
P7(y)	„I5"		
P8(x)	„16"		
P8(y)	„I7"		
$\mathrm{Pg}(\mathrm{x})$	„I8"		
$\mathrm{Pg}(\mathrm{y})$	„I9"		
P10(x)	"J0"		
P10(y)	"J1"		
P11(x)	"J2"		
P11(y)	"J3"		
P12(x)	"J4"		
P12(y)	„J5"		
P13(x)	"J6"		
P13(y)	"J7"		
P14(x)	"J8"		
P14(y)	„J9"		
P15(x)	"K0"		
P15(y)	"K1"		
P16(x)	"K2"		
P16(y)	"K3"		

6.2.11. Display -Menu

| Display -Menu | | Code | Setting Range |
| :--- | :--- | :---: | :---: | Default

*) f=Input frequency in Hz
With display modes 2-4 also the switching point settings will use the same engineering units as set for the display

7. Example for Commissioning

The following example is to explain setup and commissioning of the units with a typical application.

- A tooth wheel with 32 teeth should be monitored with respect to speed and standstill
- For speed pick-up we use two proximity switches "Namur-type", which for detection of the direction of rotation are mechanically displaced to generate an impulse offset
- Relay 1 should signal "standstill" when one second after detection of "zero frequency" no further input impulse has been registered
- Relay 2 should generate a timed output pulse of 0.3 seconds when the speed drops below 100 RPM in either forward or reverse direction.
- Relay 3 should switch on and catch when, with forward direction only, the speed exceeds 300 RPM. With reverse direction relays 3 should not respond at all
- Release of the relay 3 catch state should be possible by either a positive signal applied to input "Control1", or by activating the ENTER key

The table below shows the setup procedure for an application according to the previous example. Parameters which are not mentioned are optional, but not relevant for this function.

Nr ,	Menu	Parameter	Value	Function
1	Preselect Menu	Preselection1 Preselection2 Preselection3	$\begin{aligned} & 100 \\ & 300 \end{aligned}$	unimportant (relay 1 is used for standstill) Switching point for "underspeed" Switching point for "overspeed"
2	Encoder Menu	Encoder Proper. Wait Time	$\begin{gathered} =1 \\ =5,00 \end{gathered}$	A/B/90 ${ }^{\circ}$, HTL / NPN for two displaced Namur sensors Frequencies $<0,2 \mathrm{~Hz}$ are considered as " 0 "
3	Command Menu	Key Enter Func. Input 1 Config. Input 1 Func.	$\begin{aligned} & =7 \\ & =1 \\ & =7 \end{aligned}$	ENTER key to release the relay 3 catch Function of "Control1" input is static HIGH "Control1" input to release the relay 3 catch
4	Switching Menu	Pulse Time 1 Pulse Time 2 Pulse Time 3 Presel. Mode1 Presel. Mode2 Presel. Mode3 Output Polarity Start-up Mode Start-up Relay Lock Relay Standstill Time	$\begin{gathered} =0 \\ =0.30 \\ =0 \\ =3 \\ =1 \\ =4 \\ =0 \\ =0 \\ =0 \\ =4 \\ =1.00 \end{gathered}$	Relay 1 static Relay 2 timed output 0.3 seconds Relay 3 static Relay 1 energizes after lapse of standstill time Relay 2 energizes when absolute value underpassed Relay 3 energizes with positive overstepping only All relays with non-inverted function (energize) No start-up-delay function No relay assignment to start-up-delay Relay 3 to operate with catch function Standstill output 1 second after detection of "frequency $=0$ " (i.e. 6 seconds after the last input pulse)
5	Display Menu	Display Mode Encoder Factor Multiplier	$\begin{gathered} =3 \\ =32 \\ =1 \end{gathered}$	Engineering units are RPM Tooth wheel generates 32 pulses per revolution No specific impulse scaling

8. Appendix

8.1. Hints for Use of the Linearization Function

The linearization function of these units allow to convert a linear input frequency into a nonlinear developing, which can be indicated on the LCD display and which is also available as analogue signal or as serial data, for further processing.

There are 16 programmable x / y coordinates available, which can be set in any desired distance over the full conversion range. Between two coordinates, the unit uses linear interpolation. Therefore it is advisable to use more coordinates in a range with strong curves and only a few coordinates where the curvature is less.

To specify your desired linearisation curve, you must first set the "Linearisation Mode" register to either 1 or 2 .

Use registers $\mathrm{P} 1(\mathrm{x})$ to $\mathrm{P} 16(\mathrm{x})$ to specify the coordinates on the x -axis. These are the measuring values that the unit normally would generate according to the actual input frequency. These settings must be in \% of full scale.
Now enter the attached values to registers P1(y) to P16(y). These are the values that the unit will generate instead of the x-values, i.e. $\mathrm{P} 2(y)$ will substitute $\mathrm{P} 2(x)$ etc.

8.2. Data Readout via Serial Interface

All register codes shown in the "Serial Menu" are available for serial readout by PC or PLC. For communication the monitors use the Drivecom Protocol according to ISO 1745. All protocol details can be found in our manual SERPRO_2a.doc which is available for download from our homepage
www.motrona.de
To request for a data transmission you must send the following request string to the converter:

EOT	AD1	AD2	C1	C2	ENQ
EOT $=$ control character (Hex 04)					
AD1 $=$ unit address, High Byte					
AD2 = unit address, Low Byte					
C1 $=$ register code, High Byte					
C2 $=$ register code, Low Byte					
EN0 = control character (Hex 05)					

The following example shows the request string for readout of the actual input frequency of a monitor (code :9) from a unit with unit address 11:

ASCII Code:	EOT	1	1	$:$	9	ENQ
Hex Code:	04	31	31	$3 A$	39	05
Binary Code:	00000100	00110001	00110001	00111010	00111001	00000101

After a correct request, the unit will respond:

STX	C1	C2	$x x x x x x x$	ETX	BCC

STX = control character (Hex 02)
C1 = register code, High Byte
C2 = register code, Low Byte
xxxxx = readout data
ETX = control character (Hex 03)
BCC = block check character
For all further details see SERPRO_2a.doc.

8.3. "Relay Action", override relay states by programmed states

Models providing relay outputs allow to temporary change the actual relay states according to a programmable ON / OFF pattern, or to temporary freeze the actual switching states. These override functions can be activated by either touching a front key or by a remote command.

8.3.1. Override relay states by programmable ON / OFF states

Parameter "Relay Action" allows to select which of the relays should be affected by the override action. Parameter "Action Polarity" provides setting of the desired "ON / OFF" pattern" (see section 6.2.9, "Switching Menu").
The desired way of activation this override command can be set by the "Command-Menu" (see 6.2.6).

Application example:

You would like to temporary de-energize relays K1 and K3 by touching the key "UP", whilst relay K2 should continue to function normally.

Action		Parameter settings
1	Assign the Override Command to key "UP"	Key Up Func. = 2
2	Select relays K1 and K3	Relay Action = 5
3	Set the desired switching state of the relays	Action Polarity = 2
	(both de-energized)	

8.3.2. Freeze the actual switching state of all relays

This function will temporary freeze all relays in their actual state for the duration where you press a key or apply a remote command. During the freeze period the relays will no more follow any changes of the input frequency

Application example:

You would like to freeze all relays by applying a "High" signal to input "Control1"

Action		Parameter settings
1	Assign the Freeze command to input "Control1"	Input 1 Func. $=2$
2	Set the input to "Active High" characteristics	Input 1 Config $=1$
3	Assign the "Freeze relays" function to the input	Relay Action = 8

| - These commands will override the switching states of the selected relays. All relays |
| :--- | :--- |
| will immediately return to the actual control state after removing the override |
| command. All internal measuring and control cycles will continue normally. |
| - To use these functions, please set the corresponding key and input characteristics to |
| static operation only, since dynamic (edge-triggered) operation would make no sense |

8.4. Monitoring of remote motion enable signals

The unit provides a special "Command Monitor" function for logical control of a motion enable signal and the resulting response of the system. In addition to the normal monitoring functions this mode is suitable to generate alarm outputs under any of the following conditions:

- motion is disabled, but still the system moves
- motion is enabled, but the system does not move at all (mechanical deadlock), or the system does not reach the scheduled speed within an expected time (overload)
- the motion command changes over from "enable" to "disable" but the system does not come down to standstill within an expected time

The following parameter settings will activate the Command Monitor function:

8.4.1. Definition of a speed window

The application requires one of the relays to operate in overspeed mode (Preselect Mode $=0$) and another relay to operate in underspeed mode (Preselect Mode $=1$). This will define a window for the expected speed under regular motion conditions (see 6.2.9)

8.4.2. Assignment of a control input

One of the two control inputs has to be set to the control function "12" to activate the monitoring of the command. This input must be connected to the remote Enable/Disable signal (see parameters "Input Function" under 6.2.6)

8.4.3. Assignment of the control polarity

Parameter "Input Config" provides setting of the input polarity as follows:

$$
\begin{array}{lll}
\text { Input Config = } & \Rightarrow & \text { Motion disabled (stop) corresponds to input level "LOW" } \\
& & \text { Motion enabled (run) corresponds to input level "HIGH" } \\
\text { Input Config =1 } & \Rightarrow & \begin{array}{l}
\text { Motion disabled (stop) corresponds to input level "HIGH" } \\
\end{array} \\
& \text { Motion enabled (run) corresponds to input level "LOW" }
\end{array}
$$

8.4.4. Setting of a Start-up delay time

Any signal changes from "disable" to "enable" or vice-versa will require some delay until the system could really follow the command (acceleration or deceleration). Therefore it is mandatory to set an appropriate start-up delay time (to the relay responsible for "underspeed" only). See "Start Up Mode" and "Start Up Relay" under 6.2.9

8.4.5. Setting of an appropriate Standstill definition

Under parameter "Standstill Time" an appropriate time must be set.
It is important to set a time higher than the Start-up delay time!

- The command monitor uses always the same relay to which the underspeed function has been assigned
- While the command monitor function is active, you can see an indicator box in the $\mathrm{Pl} / \mathrm{PO}$ column of the PC screen. The "Command Monitor" box shines blue when the motion command is in "Disable" state

9. Specifications and Dimensions

Power supply	17 VDC - 30 VDC
Current consumption	approx. 70 mA with 24 VDC
Aux. output for encoder supply	5.2 V max. 200 mA
Inputs Control 1 / 2	$\begin{array}{ll} \mathrm{Ri}=3,9 \mathrm{kOhms}, \mathrm{LOW}<2,5 \mathrm{~V}, \mathrm{HIGH}>10 \mathrm{~V} \\ \text { minimum duration of dynamic signals: } & 50 \mu \mathrm{sec} . \\ \text { minimum duration of static signals: } & 2 \text { msec. } \end{array}$
Encoder inputs	RS422, differential voltage $>1 \mathrm{~V}$ TTL, LOW < $0.5 \mathrm{~V}, \mathrm{HIGH}>3 \mathrm{~V}$ HTL (NPN / PNP) Ri $=4,75$ k, LOW $<4 V /$ HIGH $>10 \mathrm{~V}$
Input frequency	RS422 und TTL differential: 1 MHz HTL und TTL single-ended: 350 kHz
Analogue output (not with DZ 267)	$\begin{aligned} & \text { +/- } 10 \mathrm{~V} \text {, max. } 2 \mathrm{~mA} \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \text { (load: max } 270 \mathrm{hm} \text {) } \\ & \text { Resolution } 14 \text { bits, accuracy } 0.1 \% \\ & \text { Settling time approx. } 200 \mathrm{us} \\ & \text { Step response }=2 \times \text { sampling time }+200 \mathrm{us} \end{aligned}$
Relays (not with DZ 266)	Dry change-over contacts, switching capability $30 \mathrm{~V} / 2 \mathrm{~A} \mathrm{DC}$ or $125 \mathrm{~V} / 0.6 \mathrm{~A}$ AC or $230 \mathrm{~V} / 0.3 \mathrm{~A} \mathrm{AC}$ Response time approx. 4 msec.
Serial interface	RS232 / 2400-38400 Bauds
Ambient temperature	$\begin{array}{lr}\text { Operation: } & 0-45^{\circ} \mathrm{C}\left(32-113^{\circ} \mathrm{F}\right) \\ \text { Storage: } & -25-+70^{\circ} \mathrm{C}\left(-13-158^{\circ} \mathrm{F}\right)\end{array}$
Housing	Plastic housing, suitable for mounting to standard DIN rails (35 mm)
Display	LCD with backlight 2 lines at 16 characters, $3,5 \mathrm{~mm}$ size
Protection class	IP20
Connections	25 position screw terminals for cross sections of max. $1.5 \mathrm{~mm}^{2}\left(0.0023 \mathrm{in}^{2}\right)$
Conformity and Standards	EMC2004/108/EC: $\begin{array}{ll}\text { EN 61000-6-2 } \\ & \text { EN 61000-6-3 }\end{array}$
	LV2006/95/EC: EN 61010-1

Dimensions:

Front view

Side view

